Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.

Identifieur interne : 001867 ( Main/Exploration ); précédent : 001866; suivant : 001868

Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.

Auteurs : Martial L Ndeffo Mbah [Royaume-Uni] ; Christopher A. Gilligan

Source :

RBID : pubmed:19900466

Descripteurs français

English descriptors

Abstract

There is growing interest in incorporating economic factors into epidemiological models in order to identify optimal strategies for disease control when resources are limited. In this paper we consider how to optimize the control of a pathogen that is capable of infecting multiple hosts with different rates of transmission within and between species. Our objective is to find control strategies that maximize the discounted number of healthy individuals. We consider two classes of host-pathogen system, comprising two host species and a common pathogen, one with asymmetrical and the other with symmetrical transmission rates, applicable to a wide range of SI (susceptible-infected) epidemics of plant and animal pathogens. We motivate the analyses with an example of sudden oak death in California coastal forests, caused by Phytophthora ramorum, in communities dominated by bay laurel (Umbellularia californica) and tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it is optimal to give priority in treating disease to the more infectious species, and to treat the other species only when there are resources left over. For the symmetric case, we show that although a switching strategy is an optimum, in which preference is first given to the species with the lower level of susceptibles and then to the species with the higher level of susceptibles, a simpler strategy that favors treatment of infected hosts for the more susceptible species is a robust alternative for practical application when the optimal switching time is unknown. Finally, since transmission rates are notoriously difficult to estimate, we analyze the robustness of the strategies when the true state with respect to symmetry or otherwise is unknown but one or other is assumed.

DOI: 10.1016/j.jtbi.2009.11.001
PubMed: 19900466


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.</title>
<author>
<name sortKey="Mbah, Martial L Ndeffo" sort="Mbah, Martial L Ndeffo" uniqKey="Mbah M" first="Martial L Ndeffo" last="Mbah">Martial L Ndeffo Mbah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK. mln25@cam.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gilligan, Christopher A" sort="Gilligan, Christopher A" uniqKey="Gilligan C" first="Christopher A" last="Gilligan">Christopher A. Gilligan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19900466</idno>
<idno type="pmid">19900466</idno>
<idno type="doi">10.1016/j.jtbi.2009.11.001</idno>
<idno type="wicri:Area/Main/Corpus">001997</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001997</idno>
<idno type="wicri:Area/Main/Curation">001997</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001997</idno>
<idno type="wicri:Area/Main/Exploration">001997</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.</title>
<author>
<name sortKey="Mbah, Martial L Ndeffo" sort="Mbah, Martial L Ndeffo" uniqKey="Mbah M" first="Martial L Ndeffo" last="Mbah">Martial L Ndeffo Mbah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK. mln25@cam.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gilligan, Christopher A" sort="Gilligan, Christopher A" uniqKey="Gilligan C" first="Christopher A" last="Gilligan">Christopher A. Gilligan</name>
</author>
</analytic>
<series>
<title level="j">Journal of theoretical biology</title>
<idno type="eISSN">1095-8541</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Communicable Disease Control (MeSH)</term>
<term>Disease Outbreaks (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Phytophthora (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Trees (genetics)</term>
<term>Umbellularia (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (génétique)</term>
<term>Contrôle des maladies transmissibles (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Phytophthora (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Umbellularia (MeSH)</term>
<term>Écosystème (MeSH)</term>
<term>Épidémies de maladies (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phytophthora</term>
<term>Plant Diseases</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Maladies des plantes</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Communicable Disease Control</term>
<term>Disease Outbreaks</term>
<term>Ecosystem</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Models, Theoretical</term>
<term>Species Specificity</term>
<term>Time Factors</term>
<term>Umbellularia</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Contrôle des maladies transmissibles</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Modèles biologiques</term>
<term>Modèles théoriques</term>
<term>Spécificité d'espèce</term>
<term>Umbellularia</term>
<term>Écosystème</term>
<term>Épidémies de maladies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is growing interest in incorporating economic factors into epidemiological models in order to identify optimal strategies for disease control when resources are limited. In this paper we consider how to optimize the control of a pathogen that is capable of infecting multiple hosts with different rates of transmission within and between species. Our objective is to find control strategies that maximize the discounted number of healthy individuals. We consider two classes of host-pathogen system, comprising two host species and a common pathogen, one with asymmetrical and the other with symmetrical transmission rates, applicable to a wide range of SI (susceptible-infected) epidemics of plant and animal pathogens. We motivate the analyses with an example of sudden oak death in California coastal forests, caused by Phytophthora ramorum, in communities dominated by bay laurel (Umbellularia californica) and tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it is optimal to give priority in treating disease to the more infectious species, and to treat the other species only when there are resources left over. For the symmetric case, we show that although a switching strategy is an optimum, in which preference is first given to the species with the lower level of susceptibles and then to the species with the higher level of susceptibles, a simpler strategy that favors treatment of infected hosts for the more susceptible species is a robust alternative for practical application when the optimal switching time is unknown. Finally, since transmission rates are notoriously difficult to estimate, we analyze the robustness of the strategies when the true state with respect to symmetry or otherwise is unknown but one or other is assumed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19900466</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8541</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>262</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Journal of theoretical biology</Title>
<ISOAbbreviation>J Theor Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.</ArticleTitle>
<Pagination>
<MedlinePgn>757-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtbi.2009.11.001</ELocationID>
<Abstract>
<AbstractText>There is growing interest in incorporating economic factors into epidemiological models in order to identify optimal strategies for disease control when resources are limited. In this paper we consider how to optimize the control of a pathogen that is capable of infecting multiple hosts with different rates of transmission within and between species. Our objective is to find control strategies that maximize the discounted number of healthy individuals. We consider two classes of host-pathogen system, comprising two host species and a common pathogen, one with asymmetrical and the other with symmetrical transmission rates, applicable to a wide range of SI (susceptible-infected) epidemics of plant and animal pathogens. We motivate the analyses with an example of sudden oak death in California coastal forests, caused by Phytophthora ramorum, in communities dominated by bay laurel (Umbellularia californica) and tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it is optimal to give priority in treating disease to the more infectious species, and to treat the other species only when there are resources left over. For the symmetric case, we show that although a switching strategy is an optimum, in which preference is first given to the species with the lower level of susceptibles and then to the species with the higher level of susceptibles, a simpler strategy that favors treatment of infected hosts for the more susceptible species is a robust alternative for practical application when the optimal switching time is unknown. Finally, since transmission rates are notoriously difficult to estimate, we analyze the robustness of the strategies when the true state with respect to symmetry or otherwise is unknown but one or other is assumed.</AbstractText>
<CopyrightInformation>(c) 2009 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mbah</LastName>
<ForeName>Martial L Ndeffo</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK. mln25@cam.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gilligan</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/B502379/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Theor Biol</MedlineTA>
<NlmUniqueID>0376342</NlmUniqueID>
<ISSNLinking>0022-5193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003140" MajorTopicYN="Y">Communicable Disease Control</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027422" MajorTopicYN="N">Umbellularia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19900466</ArticleId>
<ArticleId IdType="pii">S0022-5193(09)00527-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtbi.2009.11.001</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gilligan, Christopher A" sort="Gilligan, Christopher A" uniqKey="Gilligan C" first="Christopher A" last="Gilligan">Christopher A. Gilligan</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Mbah, Martial L Ndeffo" sort="Mbah, Martial L Ndeffo" uniqKey="Mbah M" first="Martial L Ndeffo" last="Mbah">Martial L Ndeffo Mbah</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001867 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001867 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19900466
   |texte=   Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19900466" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024